
File System Reliability and 
Journaling File System

ECE 469, April 17

Aravind Machiry



1

File System Reliability

● Loss of data in a file system can have catastrophic effect
● How does it compare to hardware (DRAM) failure?

● Need to ensure safety against data loss

● Reasons for loss of data:
● Accidental or malicious deletion of data

● Media (disk) failure 

● System crash during file system modifications



2

Handling loss of data

● Accidental or malicious deletion of data?

● Media (disk) failure?

● System crash during file system modifications?



3

Handling loss of data

● Accidental or malicious deletion of data?

● Backup

● Media (disk) failure?

● System crash during file system modifications?



4

Backup

● Copy entire file system onto low-cost media (tape), at regular intervals (e.g. 
once a day).

● Backup storage (cold storage)

● In the event of a disk failure, replace disk and restore from backup media

● Amount of loss is limited to modifications occurred since last backup



5

Handling loss of data

● Accidental or malicious deletion of data?

● Backup

● Media (disk) failure?

● Data Replication (e.g., RAID)

● System crash during file system modifications?



6

Data Replication

● Full replication

● Mirroring across disks

● Full replication to different machines (more next week)

● RAID (next lecture)

● Erasure Coding

● Like RAID, use parity, but saves more space



7

Handling loss of data

● Accidental or malicious deletion of data?

● Backup

● Media (disk) failure?

● Data Replication (e.g., RAID)

● System crash during file system modifications?

● Crash Recovery



8

Crash Recovery

● After a system crash in the middle of a file system operation, file system 
metadata may be in an inconsistent state 

● Can we recover from this inconsistent state!?



9

File Persistence under Buffer 
Cache/Page Cache
● Problem: file cache memory is volatile, but users expect disk files to be 

persistent

● In the event of a system crash, dirty blocks in the page cache are lost !

● Example 1: creating “/dir/a”

● Allocate inode (from free inode list) for “a”

● Update parent dir content – add (“a”, inode#) to “dir”



10

File Persistence under Buffer 
Cache/Page Cache
● Solution 1: use write-through cache

● Modifications are written to disk immediately

● (minimize “window of opportunities”)

● No performance advantage for disk writes



11

File Persistence under Buffer 
Cache/Page Cache
● Solution 2: write back cache

● Gather (buffer) writes in memory and then write all buffered data 
back to storage devices

● e.g., write back dirty blocks after no more than 30 seconds

● e.g., write back all dirty blocks during file close

● Problem with this?



12

Many “dirty” blocks in memory: What 
order to write to disk?

B I D
Disk

Memory? ? ?

● Example: Appending a new block to existing file

● Write data bitmap B (for new data block),
write inode I of file (to add new pointer, update time),
write new data block D



13

Problem
● One file operation may involve modifying multiple disk blocks (and hence 

multiple disk I/Os)

● After crashing, do we know which blocks were involved at the moment of 
crashing?



14

Crash after Bitmap
● Write Ordering: Bitmap (B), Inode (I), Data (D) 

● But CRASH after B has reached disk, before I or D

● Result?

B I D
Disk

Memory



15

Crash after inode
● Write Ordering: Inode (I), Bitmap (B), Data (D) 

● But CRASH after I has reached disk, before B or D

● Result?

B I D
Disk

Memory



16

Crash after bitmap and inode
● Write Ordering: Inode (I), Bitmap (B), Data (D) 

● CRASH after I AND B have reached disk, before D

● Result?

B I D
Disk

Memory



17

Crash after Data
● Write Ordering: Data (D) , Bitmap (B), Inode (I)

● CRASH after D has reached disk, before I or B

● Result?

B I D
Disk

Memory



18

Traditional Solution: fsck
● FSCK: “file system checker”

● When system boots:

● Make multiple passes over file system,
looking for inconsistencies

● e.g., inode pointers and bitmaps, 
directory entries and inode reference counts

● Either fix automatically or punt to admin

● How to recover?



19

Crash after Bitmap: Can we recover?
● Write Ordering: Bitmap (B), Inode (I), Data (D) 

● But CRASH after B has reached disk, before I or D

● Result?

B I D
Disk

Memory



20

Crash after inode: Can we recover?
● Write Ordering: Inode (I), Bitmap (B), Data (D) 

● But CRASH after I has reached disk, before B or D

● Result?

B I D
Disk

Memory



21

Crash after bitmap and inode
Can we recover?

● Write Ordering: Inode (I), Bitmap (B), Data (D) 

● CRASH after I AND B have reached disk, before D

● Result?

B I D
Disk

Memory



22

Traditional Solution: fsck
● Main problem with fsck: Performance

● Sometimes takes hours to run on large disk volumes



23

Solution 2: Logging file system updates
● We need to ensure a “copy” of consistent state can always be recovered

● Either the old consistent state (before updates)

● Undo Log

● Make a copy of the old state to a different place

● Update the current place

● Or the new consistent state (after updates)

● Redo Log

● Write to a new place, leave the old place intact



24

Redo Log
● Idea: Write something down to disk at a different location from the data 

location

● Called the “write ahead log” or “journal”

● When all data is written to redo log, write it back to the data location, and 
then delete the data on redo log

● When crash occurs, look through the redo log and see what was going on

● Replay complete data, discard incomplete data

● The process is called “recovery”



25

Journaling File Systems

● Basic idea

● update metadata, or all data, transactionally

● “all or nothing”

● Failure atomicity

● if a crash occurs, you may lose a bit of work, but the disk will be in a 
consistent state

● more precisely, you will be able to quickly get it to a consistent state 
by using the transaction log/journal – rather than scanning every 
disk block and checking sanity conditions



26

Journaling File Systems

● In file systems with page cache, the data is in two places:

● On disk

● In in-memory caches

● The basic idea of the solution:

● Always leave “home copy” of data in a consistent state

● Make updates persistent by writing them to a sequential (chronological) 
journal partition/file

● At your leisure, push the updates (in order) to the home copies and reclaim 
the journal space

● Or, make sure log is written before updates



27

Journal
● Journal: an append-only file containing log records

● <start t>

● transaction t has begun



28

Journal
● Journal: an append-only file containing log records

● <start t>

● transaction t has begun

● <t,x,v>

● transaction t has updated block x and its new value is v

▪ Can log block “diffs” instead of full blocks

▪ Can log operations instead of data (operations must be idempotent and 
undoable)



29

Journal
● Journal: an append-only file containing log records

● <start t>

● transaction t has begun

● <t,x,v>

● transaction t has updated block x and its new value is v

▪ Can log block “diffs” instead of full blocks

▪ Can log operations instead of data (operations must be idempotent and undoable)

● <commit t>

● transaction t has committed – updates will survive a crash

● Only after the commit block is written is the transaction final

● The commit block is a single block of data on the disk

● Committing involves writing the records – the home data doesn’t need to be 
updated at this time



30

How does data get out of the journal?

● After a commit the new data is in the journal – it needs to be written back 
to its home location on the disk

● Cannot reclaim that journal space until we resync the data to disk



31

Journal Checkpointing

● A cleaner thread walks the journal in order, updating the home locations 
(on disk, not the cache!) of updates in each transaction

● Once a transaction has been reflected to the home locations, it can be 
deleted from the journal



32

Crash Recovery

● Only completed updates have been committed

● During reboot, the recovery mechanism reapplies the committed 
transactions in the journal

● The old and updated data are each stored separately, until the commit 
block is written



33

If a crash occurs
● Open the log and parse

● <start>, data, <commit> => committed transactions

● <start>, no <commit> => uncommitted transactions

● Redo committed transactions

● Re-execute updates from all committed transactions

● Aside: note that update (write) is idempotent: can be done any positive 
number of times with the same result.

● Undo uncommitted transactions

● Undo updates from all uncommitted transactions

● Write “compensating log records” to avoid work in case we crash 
during the undo phase



34

Case Study: Ext3

● Ext3: roughly ext2+journaling

● Ext3 grew out of ext2

● Exact same code base

● Completely backwards compatible (if you have a clean reboot)



35

Ext3 and Journaling

● Two separate layers

● /fs/ext3 – just the filesystem with transactions

● /fs/jdb – just the journaling stuff

● ext3 calls jbd as needed

● Start/stop transaction

● Ask for a journal recovery after unclean reboot



36

Ext3 and Journaling

● Journal location

● EITHER on a separate device partition

● OR just a “special” file within ext2

● Three separate modes of operation:

● Data: All data is journaled

● Ordered, Writeback: Just metadata is journaled



37

Data Journaling Mode
● Same example: Update Inode (I), Bitmap (B), Data (D)

● First, write to journal:

● Transaction begin (Tx begin)

● Transaction descriptor (info about this Tx)

● I, B, and D blocks (in this example)

● Transaction end (Tx end)

● Then, “checkpoint” data to fixed ext2 structures

● Copy I, B, and D to their fixed file system locations

● Finally, free Tx in journal 

● Journal is fixed-sized circular buffer, entries
must be periodically freed



38

When crash occurs…
● Recovery: Go through log and “redo” operations

that have been successfully committed to log

● What if …
● Tx begin but not Tx end in log?

● Tx begin through Tx end are in log,
but I, B, and D have not yet been checkpointed?

● What if Tx is in log, I, B, D have been checkpointed,
but Tx has not been freed from log?

● Performance? (As compared to fsck?)



39

Problem with Data Journaling

● Data journaling: Lots of extra writes

● All data committed to disk twice (once in journal, once to final location)

● Overkill if only goal is to keep metadata consistent



40

Metadata only journaling: Writeback 
mode

● Writeback mode

● Just journals metadata

● Data is not journaled. Writes data to final location directly

● Better performance than data journaling (data written once)

● The contents might be written at any time (before or after the journal is 
updated) 

● Problems?

● If a crash happens, metadata can point to old or even garbage data!



41

Metadata only journaling: Ordered mode
● Ordered mode

● Only metadata is journaled, file contents are not (like writeback mode)

● But file contents guaranteed to be written to disk before associated 
metadata is marked as committed in the journal

● Default ext3 journaling mode



42

When crash occurs…
● Metadata will only point to correct data (no stale data can be reached 

after reboot). 

● But there may be data that is not pointed to by any metadata. 

● How is this better than writeback in terms of consistency guarantees?



43

Conclusions
● Journaling

● Almost all modern file systems use journaling to
reduce recovery time during startup
(e.g., Linux ext3/ext4, ReiserFS, SGI XFS, IBM JFS, NTFS)

● Simple idea: Use write-ahead log to record some
info about what you are going to do before doing it

● Turns multi-write update sequence into a single
atomic update (“all or nothing”)

● Some performance overhead: Extra writes to journal

● Worth the cost?


