File System Reliability and
Journaling File System

ECE 469, April 17
Aravind Machiry




File System Reliability

o Loss of data in a file system can have catastrophic effect
How does it compare to hardware (DRAM) failure?
Need to ensure safety against data loss

e Reasons for loss of data:

Accidental or malicious deletion of data
Media (disk) failure
System crash during file system modifications




Handling loss of data

Accidental or malicious deletion of data?
Media (disk) failure?
System crash during file system modifications?




Handling loss of data

Accidental or malicious deletion of data?
e Backup
Media (disk) failure?

System crash during file system modifications?




Backup

e Copy entire file system onto low-cost media (tape), at regular intervals (e.g.
once a day).

Backup storage (cold storage)

® |nthe event of a disk failure, replace disk and restore from backup media

e Amount of loss is limited to modifications occurred since last backup



Handling loss of data

Accidental or malicious deletion of data?
e Backup

Media (disk) failure?

e Data Replication (e.g., RAID)

System crash during file system modifications?




Data Replication

e Full replication
® Mirroring across disks

e Full replication to different machines (more next week)
e RAID (next lecture)

e Erasure Coding

e Like RAID, use parity, but saves more space




Handling loss of data

o Accidental or malicious deletion of data?
e Backup
o Media (disk) failure?
e Data Replication (e.g., RAID)
o System crash during file system modifications?

e Crash Recovery




Crash Recovery

® After a system crash in the middle of a file system operation, file system
metadata may be in an inconsistent state

e Can we recover from this inconsistent state!?



File Persistence under Buffer
Cache/Page Cache

® Problem: file cache memory is volatile, but users expect disk files to be
persistent
e In the event of a system crash, dirty blocks in the page cache are lost !
e Example 1: creating “/dir/a”
Allocate inode (from free inode list) for “a”
Update parent dir content — add (“a”, inode#) to “dir”




File Persistence under Buffer
Cache/Page Cache

e Solution 1: use write-through cache

e Modifications are written to disk immediately
(minimize “window of opportunities”)
® No performance advantage for disk writes

10



File Persistence under Buffer
Cache/Page Cache

e Solution 2: write back cache

e Gather (buffer) writes in memory and then write all buffered data
back to storage devices

e e.g., write back dirty blocks after no more than 30 seconds
e e.g., write back all dirty blocks during file close

® Problem with this?

11



Many “dirty” blocks in memory: What
order to write to disk?

e Example: Appending a new block to existing file

e Write data bitmap B (for new data block),
write inode | of file (to add new pointer, update time),
write new data block D

- 1
+ 2 +? +? Memory
Disk
! D
12




Problem

e One file operation may involve modifying multiple disk blocks (and hence
multiple disk |/Os)

e After crashing, do we know which blocks were involved at the moment of
crashing?

13



233
®
Crash after Bitmap
e \Write Ordering: Bitmap (B), Inode (I), Data (D)
But CRASH after B has reached disk, before | or D
® Result?
s —
* Memory
Disk

U

= | .



233
®
Crash after inode
e \Write Ordering: Inode (1), Bitmap (B), Data (D)
But CRASH after | has reached disk, before Bor D
® Result?
s —
* Memory
Disk

U

r | 15



Crash after bitmap and inode

e \Write Ordering: Inode (1), Bitmap (B), Data (D)
e CRASH after | AND B have reached disk, before D
e Result?

— 0 —

* * Memory
Disk
& !
16

U




Crash after Data

e Write Ordering: Data (D), Bitmap (B), Inode (I)
CRASH after D has reached disk, before | or B

® Result?

— 0 —

Memory
* Disk

r | ;

U




Traditional Solution: fsck

e FSCK: “file system checker”
e When system boots:

Make multiple passes over file system,
looking for inconsistencies

e.g., inode pointers and bitmaps,
directory entries and inode reference counts

Either fix automatically or punt to admin
How to recover?

18



Crash after Bitmap: Can we recover? s:
e \Write Ordering: Bitmap (B), Inode (I), Data (D)
e But CRASH after B has reached disk, before | or D
e Result?
- |
* Memory
Disk

U

= | .




Crash after inode: Can we recover?

e \Write Ordering: Inode (1), Bitmap (B), Data (D)
But CRASH after | has reached disk, before Bor D

® Result?

— 0 —

* Memory
Disk

r | .

U




Crash after bitmap and inode
Can we recover?

e \Write Ordering: Inode (1), Bitmap (B), Data (D)
e CRASH after | AND B have reached disk, before D
e Result?

— 0 —

* * Memory
Disk
& !
21

U




Traditional Solution: fsck

e Main problem with fsck: Performance
e Sometimes takes hours to run on large disk volumes

22



Solution 2: Logging file system updates

e We need to ensure a “copy” of consistent state can always be recovered

e Either the old consistent state (before updates)

e Undo Log
e Make a copy of the old state to a different place
e Update the current place

e Or the new consistent state (after updates)

® Redolog

e Write to a new place, leave the old place intact )



Redo Log

ldea: Write something down to disk at a different location from the data
location

Called the “write ahead log” or “journa

When all data is written to redo log, write it back to the data location, and
then delete the data on redo log

I”

When crash occurs, look through the redo log and see what was going on
Replay complete data, discard incomplete data

The process is called “recovery”

24



Journaling File Systems

® Basicidea
update metadata, or all data, transactionally
“all or nothing”
Failure atomicity

if a crash occurs, you may lose a bit of work, but the disk will be in a
consistent state

more precisely, you will be able to quickly get it to a consistent state
by using the transaction log/journal — rather than scanning every
disk block and checking sanity conditions

25



Journaling File Systems

e |n file systems with page cache, the data is in two places:
On disk

In in-memory caches
® The basic idea of the solution:
Always leave “home copy” of data in a consistent state

Make updates persistent by writing them to a sequential (chronological)
journal partition/file

At your leisure, push the updates (in order) to the home copies and reclaim
the journal space

Or, make sure log is written before updates

26



Journal

e Journal: an append-only file containing log records
® <startt>
transaction t has begun

27



( X N J
33
Journal :
e Journal: an append-only file containing log records
<start t>

transaction t has begun

<t,x,v>
transaction t has updated block x and its new value is v
= Can log block “diffs” instead of full blocks

= Can log operations instead of data (operations must be idempotent and
undoable)

28



Journal

Journal: an append-only file containing log records

<start t>

transaction t has begun
<t,x,v>
transaction t has updated block x and its new value is v
Can log block “diffs” instead of full blocks

Can log operations instead of data (operations must be idempotent and undoable)

<commit t>
transaction t has committed — updates will survive a crash
Only after the commit block is written is the transaction final
The commit block is a single block of data on the disk

Committing involves writing the records — the home data doesn’t need to be
updated at this time



How does data get out of the journal?

« After a commit the new data is in the journal — it needs to be written'back
to its home location on the disk

« Cannot reclaim that journal space until we resync the data to disk

30



Journal Checkpointing

« A cleaner thread walks the journal in order, updating the home locations
(on disk, not the cache!) of updates in each transaction

« Once a transaction has been reflected to the home locations, it can be
deleted from the journal

31



Crash Recovery

® Only completed updates have been committed

During reboot, the recovery mechanism reapplies the committed
transactions in the journal

e The old and updated data are each stored separately, until the commit
block is written

32



If a crash occurs

e Open the log and parse
<start>, data, <commit> => committed transactions
<start>, re—~<eommit> => uncommitted transactions
e Redo committed transactions
Re-execute updates from all committed transactions

Aside: note that update (write) is idempotent: can be done any positive
number of times with the same result.

e Undo uncommitted transactions
Undo updates from all uncommitted transactions

Write “compensating log records” to avoid work in case we crash

during the undo phase
33



Case Study: Ext3

e Ext3: roughly ext2+journaling

e Ext3 grew out of ext2
® Exact same code base
e Completely backwards compatible (if you have a clean reboot)

34



Ext3 and Journaling

e Two separate layers
o [fs/ext3 —just the filesystem with transactions
e /fs/jdb — just the journaling stuff

e ext3 calls jbd as needed
e Start/stop transaction
e Ask for a journal recovery after unclean reboot

35



Ext3 and Journaling

e Journal location
e EITHER on a separate device partition
® ORjust a “special” file within ext2

® Three separate modes of operation:
e Data: All data is journaled
e Ordered, Writeback: Just metadata is journaled

36



Data Journaling Mode

Same example: Update Inode (l), Bitmap (B), Data (D)
First, write to journal:
Transaction begin (Tx begin)
Transaction descriptor (info about this Tx)
|, B, and D blocks (in this example)
Transaction end (Tx end)
Then, “checkpoint” data to fixed ext2 structures
Copy |, B, and D to their fixed file system locations
Finally, free Tx in journal

Journal is fixed-sized circular buffer, entries
must be periodically freed

37



When crash occurs...

® Recovery: Go through log and “redo” operations
that have been successfully committed to log

e Whatif...
Tx begin but not Tx end in log?

Tx begin through Tx end are in log,
but I, B, and D have not yet been checkpointed?

What if Tx is in log, I, B, D have been checkpointed,
but Tx has not been freed from log?

® Performance? (As compared to fsck?)
38



Problem with Data Journaling

e Data journaling: Lots of extra writes
e All data committed to disk twice (once in journal, once to final location)
e Overkill if only goal is to keep metadata consistent

39



Metadata only journaling: Writeback
mode

e \Writeback mode

e Justjournals metadata

e Datais not journaled. Writes data to final location directly
e Better performance than data journaling (data written once)
o

The contents might be written at any time (before or after the journal is
updated)

® Problems?

e |f a crash happens, metadata can point to old or even garbage data!

40



Metadata only journaling: Ordered mode

® Ordered mode

Only metadata is journaled, file contents are not (like writeback mode)

But file contents guaranteed to be written to disk before associated
metadata is marked as committed in the journal

Default ext3 journaling mode

41



When crash occurs...

Metadata will only point to correct data (no stale data can be reached
after reboot).

But there may be data that is not pointed to by any metadata.
How is this better than writeback in terms of consistency guarantees?

42



Conclusions

e Journaling

Almost all modern file systems use journaling to
reduce recovery time during startup
(e.g., Linux ext3/ext4, ReiserFS, SGI XFS, IBM JFS, NTFS)

Simple idea: Use write-ahead log to record some
info about what you are going to do before doing it

Turns multi-write update sequence into a single
atomic update (“all or nothing”)

Some performance overhead: Extra writes to journal
Worth the cost?

43



